

PrenatalSafe® KARYO

Noninvasive prenatal test (NIPT) for genome-wide fetal chromosomal abnormalities

Cell-free fetal DNA analysis from maternal plasma providing karyotype-level insight

- Reverse Strate Section 2015
 PrenatalSAFE[®] Karyo test is the most technologically advanced genome-wide NIPT
- Structure Content of the second se
 - 8 Aneuploidies
 - structural chromosomal aberrations
 (deletions or duplications) across the fetal genome
- providing karyotype-level insight.

PrenatalSafe[®] the next level in noninvasive KARYO prenatal testing

- **PrenatalSafe® Karyo** analyzes every chromosome in the genome.
- Unlike any other noninvasive prenatal test available to date, it offers a level of information previously only available from a fetal karyotype analysis, performed with invasive prenatal diagnosis procedures (amniocentesis and CVS)

PrenatalSafe[®] KARYONNIPT uses cell-free DNA (cfDNA)

PrenatalSafe[®] Whole-genome sequencing KARYO technology

GENOMA® Molecular Genetics Laboratories Group

PrenatalSafe[®] 2 levels of genome-wide screening

PrenatalSafe® KARYO

Common fetal chromosomal aneuploidies

Trisomy 21	Down Syndrome	
Trisomy 18	Edwards Syndrome	
Trisomy 13	Patau Syndrome	
Monosomy X	Turner Syndrome	
ХХХ	Trisomy X	
XXY	Klinefelter Syndrome	
ХҮҮ	Jacobs Syndrome	

Other fetal chromosomal aneuploidies

Trisomy 1	Trisomy 9*
Trisomy 4	Trisomy 12
Trisomy 5	Trisomy 16
Trisomy 7	Trisomy 22

PrenatalSafe" KARYO detects aneuploidies in every chromosome

Chromosomal gains and losses across the fetal genome

PrenatalSafe KARYO Plus

It can also test for 9 common microdeletion syndromes

Microdeletion Syndrome	Prevalence
DiGeorge syndrome (22q11.2)	1 in 4,000
1p36 deletion syndrome	1 in 4,000 to 1 in 10,000
Angelman syndrome (15q11.2)	1 in 12,000
Prader-Willi syndrome (15q11.2)	1 in 10,000 to 1 in 25,000
Cri du Chat syndrome (5p15.3)	1 in 20,000 to 1 in 50,000
Wolf-Hirschhorn syndrome (4p16.3)	1 in 50,000
Langer-Giedion syndrome (8q24)	1/200.000
Jacobsen syndrome (11q23)	1/100.000
Smith-Magenis syndrome (17p11.2)	1/15.000 - 1/25.000

Detection rate

Prevalence of fetal chromosomal aneuploidies detected by PrenatalSafe[®] 5

Detection rate

PrenatalSAFE® Karyo Plus test identifies 95.5% of chromosomal anomalies prenatally detected and 99.1% of those anomalies observed at birth, achieving a level of detection rate very closed to the traditional fetal karyotyping (96.9%), obtained with invasive, prenatal diagnostic techniques.

Molecular Genetics Laboratories Group

Conventional Prenatal Screening vs

Detection Rates for Trisomy 21

PrenatalSafe®

ACOG Practice Bulletin No. 77, January 2007

Fetal Karyotyping vs PrenatalSafe®

	Traditional Karyotyping	PrenatalSafe® KARYO	PrenatalSafe KARYO Plus
Analyzes every chromosome	S	S	S
Detects chromosomal gains or losses >7 Mb	8	8	S
Detects chromosome gains or losses >10 Mb	S	S	S
Requires an invasive procedure	8	\checkmark	\checkmark
Detects unbalanced translocations	S	\checkmark	\checkmark
Detects segmental deletions/duplications	\checkmark	\checkmark	\checkmark
Detects mosaic trisomies	\checkmark	8	8
Detects marker chromosomes	\checkmark	\checkmark	\checkmark
Detects microdeletion syndromes	8	8	\checkmark
Detects triploidy	\bigotimes	8	*
Considered diagnostic	S	8	8

PrenatalSafe[®] KARYO Pre-clinical Validation performance

	Trisomy 21	Trisomy 18	Trisomy 13	SCA	CNV
	(n=1419)	(n=1419)	(n=1419)	(n=1419)	(n=1419)
True Positive	100	31	14	36	37
False Positive	0	0	0	0	0
True Negative	1319	1388	1405	1383	1382
False Negative	0	0	0	0	0
Sensitivity (95% CI)	100,00% (96.38% - 100.00%)	100,00% (88.78% - 100.00%)	100,00% (76.84% - 100.00%)	100,00% (90.26% to 100.00%)	100,00% (90.51% to 100.00%)
Specificity (95% CI)	100,00% (99.72% - 100.00%)	100,00% (99.73% - 100.00%)	100,00% (99.74% - 100.00%)	100,00% (99.73% to 100.00%)	100,00% (99.73% to 100.00%)
PPV (95% CI)	100,00% (96.38% - 100.00%)	100,00% (88.78% - 100.00%)	100,00% (76.84% - 100.00%)	100,00% (90.26% to 100.00%)	100,00% (90.51% to 100.00%)
NPV	100,00%	100,00%	100,00%	100,00%	100,00%
(95% CI)	(99.72% - 100.00%)	(99.73% - 100.00%)	(99.74% - 100.00%)	(99.73% to 100.00%)	(99.73% to 100.00%)

PPV: Positive Predictive Value; NPV: Negative Predictive Value; SCA: Sex Chromosomes Aneuploidy. CNV: Copy Number Variation

Fiorentino et al., EJHG conference 2016; ISPD conference 2016

PrenatalSafe[®] Performance Standard protocol

Follow-up March 2016

	Trisomy 21 (n=31.800)	Trisomy 18 (n=31.800)	Trisomy 13 (n=31.800)	Monosomy X (n=31.800)	SCA (n=31.800)
True positive	257	47	32	77	160
False positive	6	6	7	48	58
True negative	31536	31746	31746	31675	31582
False negative	1	1	0	0	0
Sensitivity (95% CI)	99,61% (97.86% - 99.99%)	97,92% (88.93% - 99.95%)	100,00% (89.11% - 100.00%)	100,00% (95.32% - 100.00%)	100,00% (99.72% - 100.00%)
% False Negative	0,39%	2,08%	0,00%	0,00%	0,00%
Specificity (95% CI)	99,98% (99.96% - 99.99%)	99,98% (99.96% - 99.99%)	99,98% (99.95% - 99.99%)	99,85% (99.80% - 99.89%)	99,82% (99.76% - 99.86%)
% False Positive	0,02%	0,02%	0,02%	0,15%	0,18%
PPV (95% CI)	97,72% (95.10% - 99.16%)	88,68% (76.97% - 95.73%)	82,05% (66.47% - 92.46%)	61,60% (52.48% - 70.16%)	73,39% (67.01% - 79.13%)
NPV (95% CI)	100,00% (99.98% - 100.00%)	100,00% (99.98% - 100.00%)	100,00% (99.99% - 100.00%)	100,00% (99.99% - 100.00%)	100,00% (99.99% - 100.00%)

PPV: Positive Predictive Value; NPV: Negative Predictive Value; SCA: Sex Chromosomes Aneuploidy

PrenatalSafe[®] Performance FAST protocol

Follow-up March 2016

	Trisomy 21 (n=15.258)	Trisomy 18 (n=15.258)	Trisomy 13 (n=15.258)	Monosomy X (n=15.258)	SCA (n=15.258)
True positive	156	30	20	57	91
False positive	2	1	1	18	22
True negative	15100	15227	15279	15183	15145
False negative	0	0	0	0	0
Sensitivity (95% CI)	100,00% (88.43% - 100.00%)	100,00% (88.43% - 100.00%)	100,00% (83.16% - 100.00%)	100,00% (93.73% - 100.00%)	100,00% (96.03% - 100.00%)
% False Negative	0,0%	0,0%	0,0%	0,0%	0,0%
Specificity (95% CI)	99,99% (99.96% - 100.00%)	99,99% (99.96% - 100.00%)	99,99% (99.96% - 100.00%)	99,88% (99.81% - 99.93%)	99,85% (99.78% - 99.91%)
% False Positive	0,01%	0,01%	0,01%	0,12%	0,15%
PPV (95% CI)	98,73% (83.30% - 99.92%)	96,77% (83.30% - 99.92%)	95,24% (76.18% - 99.88%)	76,00% (64.75% - 85.11%)	80,53% (72.02% - 87.38%)
NPV (95% CI)	100,00% (99.98% - 100.00%)				

PPV: Positive Predictive Value; NPV: Negative Predictive Value; SCA: Sex Chromosomes Aneuploidy

PrenatalSafe[®] KARYO Published validation studies

Original Research

ajog.org

European Journal of Human Genetics (2015), 1–8 © 2015 Macmillan Publishers Limited All rights reserved 1018-4813/15 www.nature.com/eihg

ARTICLE

OBSTETRICS

Clinical validation of a noninvasive prenatal test for genomewide detection of fetal copy number variants

Roy B. Lefkowitz, PhD; John A. Tynan, PhD; Tong Liu, PhD; Yijin Wu, PhD; Amin R. Mazloom, PhD; Eyad Almasri, MS; Grant Hogg, MS; Vach Angkachatchai, PhD; Chen Zhao, PhD; Daniel S. Grosu, MD; Graham McLennan, MS; Mathias Ehrich, MD Noninvasive prenatal testing using a novel analysis pipeline to screen for all autosomal fetal aneuploidies improves pregnancy management

Baran Bayindir^{1,2,4}, Luc Dehaspe^{1,4}, Nathalie Brison^{1,4}, Paul Brady^{1,4}, Simon Ardui¹, Molka Kammoun¹, Lars Van der Veken³, Klaske Lichtenbelt³, Kris Van den Bogaert¹, Jeroen Van Houdt¹, Hilde Peeters¹, Hilde Van Esch¹, Thomy de Ravel¹, Eric Legius¹, Koen Devriendt¹ and Joris R Vermeesch^{*,1}

Clinical Chemistry 61:4 608-616 (2015) Molecular Diagnostics and Genetics

DOI: 10.1002/pd.4110

PRENATAL DIAGNOSIS

npg

ORIGINAL ARTICLE

Detection of Fetal Subchromosomal Abnormalities by Sequencing Circulating Cell-Free DNA from Maternal Plasma

Chen Zhao,¹ John Tynan,¹ Mathias Ehrich,² Gregory Hannum,¹ Ron McCullough,¹ Juan-Sebastian Saldivar,¹ Paul Oeth,¹ Dirk van den Boom,^{2*} and Cosmin Deciu^{1*}

OPEN O ACCESS Freely available online

PLOS ONE

Noninvasive Prenatal Molecular Karyotyping from Maternal Plasma

Stephanie C. Y. Yu^{1,2}, Peiyong Jiang^{1,2}, Kwong W. Choy³, Kwan Chee Allen Chan^{1,2}, Hye-Sung Won⁴, Wing C. Leung⁵, Elizabeth T. Lau⁶, Mary H. Y. Tang⁶, Tak Y. Leung³, Yuk Ming Dennis Lo^{1,2}, Rossa W. K. Chiu^{1,2}*

1 Centre for Research into Circulating Fetal Nucleic Acids, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China, 2Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China, 3Department of Obstetrics and Gynaecology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea, 5Kwong Wah Hospital, Kong Kong SAR, China, 4Department of Obstetrics and Gynaecology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea, 5Kwong Wah Hospital, Kowloon, Hong Kong SAR, China, 6Tsan Yuk Hospital, Department of Obstetrics and Gynaecology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea, 5Kwong Wah Hospital, Kowloon, Hong Kong SAR, China, GTsan Yuk Hospital, Department of Obstetrics and Gynaecology, University of Hong Kong, Jang SAR, Jang SAR, Jang Kong SAR, Hong Kong SAR, Hong Kong

A method for noninvasive detection of fetal large deletions/ duplications by low coverage massively parallel sequencing

Shengpei Chen^{1,7†}, Tze Kin Lau^{2†}, Chunlei Zhang^{1†}, Chenming Xu³, Zhengfeng Xu⁴, Ping Hu⁴, Jian Xu⁵, Hefeng Huang⁴, Ling Pan⁵, Fuman Jiang¹, Fang Chen^{1,8}, Xiaoyu Pan^{1,6}, Weiwei Xie¹, Ping Liu¹, Xuchao Li¹, Lei Zhang¹, Songgang Li¹, Yingrui Li¹, Xun Xu¹, Wei Wang¹, Jun Wang^{1,8,9,10}, Hui Jiang^{1,8,*} and Xiuqing Zhang^{1,*}

¹BGI-Shenzhen, Shenzhen, China

- ²Fetal Medicine Centre, Paramount Clinic, Hong Kong
- ³Key Laboratory of Reproductive Genetics, Zhejiang University, Ministry of Education, Hangzhou, China
- ⁴State Key Laboratory of Reproductive Medicine, Center of Prenatal Diagnosis, Nanjing Matemity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing, China
- ⁵Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- ⁶School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
- ⁷State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
- ⁸Department of Biology, University of Copenhagen, Copenhagen, Denmark
- ⁹King Abdulaziz University, Jeddah, Saudi Arabia
- ¹⁰The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- *Correspondence to: Hui Jiang. E-mail: jianghui@genomics.org.cn or Xiuqing Zhang. E-mail: zhangxq@genomics.org.cn *These authors contributed equally to this work.

Prenatal Diagnosis 2013, 33, 584-590

PrenatalSafe[®] Which Patients Should Be Offered?

This test is intended for patients at **10** weeks or greater gestation who meet any of the following criteria:

- 8 Maternal age-related risks (e35 years)
- Section 8 Positive results on maternal serum screening
- S Abnormal ultrasound finding(s)
- 8 Prior pregnancy with aneuploidy
- 8 Parental translocation
- 8 Low risk pregnancies
 - Section Patients wanting early, accurate testing and are at average risk of aneuploidy

- Solution Strategy Strategy
- It can be performed in patients whose pregnancies have been achieved by IVF techniques, including pregnancies with egg donation.

PrenatalSafe[®] Free services supplied

RhSafe test

for pregnant women Rh(D) positive and partners Rh(D) negative

Shipper kits with Streck[™] BCT Tubes

Genetic counseling pre- and post-test

Follow-up

follow-up of anbormal results, performed with both traditional and molecular karyotyping

Case study

PrenatalSafe® Detected a fetal karyotype with an unbalanced KARYO translocation confirmed by array-CGH

Molecular Genetics Laboratories G

PrenatalSafe[®] Identification of 22q11.2 deletion KARYO PIUS confirmed by Array-CGH

PrenatalSafe[®] Detected a fetal karyotype with an unbalanced KARYO[®] translocation confirmed by array-CGH

PrenatalSafe[®]Lower the risk of false positive KARYO results determined by maternal CNVs

